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Performance optimization of an irreversible quantum spin refrigeration cycle
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Abstract

The irreversible model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The
working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the
quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient
of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is close analogues of that of
classical Carnot cycle. Some performance characteristics curves between the cooling rate and the maximum “temperature” ratio of the working
substances are plotted. Further, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analyzed in
detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum
refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration
cycles are derived analogously.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In recent years, the optimal analysis on the performance
characteristics of thermodynamic cycles has been extended to
the regime of quantum cycles. The performance of quantum
Carnot, Ericsson and Stirling cycles have been intensively stud-
ied [1–7]. Furthermore, finite-time thermodynamic analyses
of some quantum cycles have also been made [8–15]. Many
novel conclusions have been obtained. Besides, the investiga-
tions have also dealt with the performance of quantum Brayton
cycle [8,16]. In fact, Brayton cycle is one of very importance
cycles in engineering thermodynamics. The investigation rela-
tive to Brayton cycles has continuously attracted a good deal
of attention [17–19]. It has some distinctive merits which are
noteworthy in theory and practices.

In classical thermodynamic cycles there are the Stirling cy-
cle, Ericsson cycle, Brayton cycle, etc., besides the Carnot cy-
cle. The performance of the Carnot cycle is independent of
the property of the working substance, while the performance
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of other cycles are, in general, dependent on the property of
the working substance [20,21]. Quantum-mechanical cycle dif-
fers from the classical cycle in two respects. In one respect the
working substances may be the spin systems, harmonic oscil-
lator systems, ideal quantum gases, and micro-particle systems
confined to a potential well [22,23]. On the other hand, the re-
laxation dynamics is modeled by the semigroup approach. The
advantage of quantum cycles is that the use of phenomenologi-
cal heat transfer laws can be avoided.

In the present paper, an irreversible model of quantum Bray-
ton refrigeration cycle using the spin-1/2 systems as the work-
ing substance is established which is composed of two adiabatic
and two isomagnetic field processes. Firstly, The thermodynam-
ics property of a spin-1/2 system is given, based on the quan-
tum master equation and semi-group approach. Time evolution
of the heat exchange processes is derived which is different
from that described previously [13–15]. The performance char-
acteristics of the quantum Brayton refrigeration cycle are an-
alyzed. Secondly, the important performance parameters such
as the coefficient of performance, cooling rate, and power in-
put are optimized. Especially, at high temperatures the optimal
analytical relation of the cooling rate and the maximum cool-
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Nomenclature

B magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
E internal energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
Ĥ Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
h Planck constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J s
M magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . J T−1

P output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J s−1

Q amount of heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
Qc amount of heat absorbed to the working substance

from the hot reservoir . . . . . . . . . . . . . . . . . . . . . . . . J
Qh amount of heat released to the hot reservoir from

the working substance . . . . . . . . . . . . . . . . . . . . . . . . J
R cooling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J s−1

r ratio of high and low “magnetic fields”
S spin angular momentum
S1 mean value of the spin angular momentum in one

adiabatic process
S2 mean value of the spin angular momentum in

another adiabatic process
T absolute temperature . . . . . . . . . . . . . . . . . . . . . . . . K
Tc temperature of cold reservoir . . . . . . . . . . . . . . . . . K

Th temperature of hot reservoir . . . . . . . . . . . . . . . . . . K
t cycle period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
tc time of isomagnetic field process (ωc) . . . . . . . . . . s
th time of isomagnetic field process (ωh) . . . . . . . . . s
W work per cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

Greek symbols

β inverse of temperature . . . . . . . . . . . . . . . . . . . . . . J−1

βc inverse of temperature of cold reservoir . . . . . . J−1

βh inverse of temperature of hot reservoir . . . . . . . J−1

ε coefficient of performance
εc coefficient of performance of the Carnot

refrigeration cycle
μB Bohr magnetron . . . . . . . . . . . . . . . . . . . . . . . . . J T−1

ω “magnetic field” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
ωc low “magnetic field” . . . . . . . . . . . . . . . . . . . . . . . . . J
ωh high “magnetic field” . . . . . . . . . . . . . . . . . . . . . . . . . J
τ “temperature” ratio of high and low reservoirs
Γc heat conductivity of cold reservoir . . . . . . . . . . . s−1

Γh heat conductivity of hot reservoir . . . . . . . . . . . . s−1
ing rate are derived in detail. Finally, these results obtained
here may be generalized for the spin-J systems. The optimum
performance of the quantum Ericsson or Carnot refrigeration
cycles may be derived similarly.

2. Quantum refrigeration cycle

Let us consider a quantum spin-1/2 system with a magnetic
moment M placed in a magnetic field B. The magnitude of the
magnetic field can change over time, but is not allowed to reach
zero. The Hamiltonian of the interaction between the magnetic
moment M in the quantum system and the magnetic field B is
given by [24–26]

Ĥ (t) = −M̂ · B = 2μB Ŝ · B = 2μBBz(t)Ŝz (1)

where μB is the Bohr magnetron, S is a spin angular momen-
tum, h̄ = h/(2π), and h is the Planck constant. Throughout
this paper we adopt h̄ = 1 and define ω(t) = 2μBBz(t) for
simplicity. ω is positive since the spin angular momentum and
magnetic moment are in opposite directions. One can refer to ω

rather than Bz as “the field”. Thus, the Hamiltonian of an iso-
lated single spin-1/2 system in the presence of the field ω(t)

may be expressed as

Ĥ (t) = ω(t)Ŝz (2)

The internal energy of the spin-1/2 system is of the expectation
value of the Hamiltonian, i.e.,

E = 〈Ĥ 〉 = ω(t)〈Ŝz〉 = ωS (3)

Based on the statistical mechanics, the expectation value of the
spin angular momentum Sz is expressed by the following rela-
tion [27–29]

S = 〈Ŝz〉 = −1
th(βω/2) (4)
2

where −1/2 < S < 0.
In quantum refrigeration cycles, the spin-1/2 system is not

only coupled mechanically to the given “magnetic field” ω(t),
but also coupled thermally to a heat reservoir at temperature T .
Based on the semi-group formalism [25], the equation of mo-
tion of an operator in the Heisenberg picture is given by the
quantum master equation, i.e.,

dX̂
dt

= i[Ĥ , X̂] + ∂X̂
∂t

+ LD(X̂) (5)

where

LD(X̂) =
∑
α

γα

(
V̂+

α [X̂, V̂α] + [V̂+
α , X̂]V̂α

)
(6)

is a dissipation term and originates from a thermal coupling of
the spin to a heat reservoir, V̂α and V̂+

α are operators in the
Hilbert space of the system and are Hermitian conjugates, and
γα are phenomenological positive coefficients. Substituting X̂
in Eq. (5) by Ĥ and using Eq. (3), one can obtain the rate of
change of the internal energy as

dE

dt
= d

dt
〈Ĥ 〉 =

〈
∂Ĥ

∂t

〉
+ 〈

LD(Ĥ )
〉 = dω

dt
S + ω

dS

dt
(7)

Comparing Eq. (7) with the time derivative of the first law of
thermodynamics

dE

dt
= dW

dt
+ dQ

dt
(8)

one can easily find that the instantaneous power is

P = dW

dt
=

〈
∂Ĥ

∂t

〉
= dω

dt
S (9)

and the instantaneous heat flow is
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Fig. 1. The S–ω diagram of a spin-1/2 Brayton refrigeration cycle, where the
unit of ω is Joule.

dQ

dt
= 〈

LD(Ĥ )
〉 = ω

dS

dt
(10)

It is thus clear that for a spin-1/2 system, Eq. (7) gives the time
derivative of the first law of thermodynamics.

Fig. 1 shows a schematic diagram of a quantum refrigeration
cycle, which is composed of two adiabatic and two isomagnetic
field processes. This cycle is a microscopic analog of the mag-
netic Brayton refrigeration cycle [30], where the working sub-
stance consists of magnetic salts. For the convenience of writ-
ing, “temperature” will refer to β rather than T , where β = 1/T

and T is the absolute temperature in energy units. In adiabatic
process 1 → 2, no heat exchanges is involved. Increasing ω cor-
responds to the performance of work by the working substance
on the surroundings. The reverse process 3 → 4 of adiabati-
cally decreasing ω corresponds to the performance of work by
the surroundings on the working substance. In the isomagnetic
field process 2 → 3, the working substance is coupled to the
hot reservoir at constant “temperature” βh. The amount of heat
Qh is released to the hot reservoir from the working substance.
In the isomagnetic field process 4 → 1, the working substance
is coupled to the cold reservoir at constant “temperature” βc.
The amount of heat Qc is absorbed to the working substance
from the hot reservoir. The “temperatures” of the working sub-
stance are different from those of the heat reservoirs. They are,
respectively, given by β1, β2, β3, and β4, and there is a relation,
β4 > β1 � βc > βh � β3 > β2. ωh and ωc represent the high
and low “magnetic field”, respectively.

3. Performance characteristics

Using Eqs. (4) and (10), we can calculate the amounts of
heat exchange in two isomagnetic field processes as

Qh =
S1∫

S2

ω dS = ωh

[
−1

2
th(β3ωh/2) + 1

2
th(β2ωh/2)

]
(11)

and

Qc =
S2∫

ω dS = ωc

[
−1

2
th(β1ωc/2) + 1

2
th(β4ωc/2)

]
(12)
S1
where S1 and S2 are the mean values of the spin angular mo-
mentum in two adiabatic processes respectively and S1 < S2.
During the adiabatic process S remains constant, so there are
the following equations:

S1 = −1

2
th(β3ωh/2) = −1

2
th(β4ωc/2) (13)

and

S2 = −1

2
th(β1ωc/2) = −1

2
th(β2ωh/2) (14)

Using Eqs. (11)–(12), we obtain the work input per cycle and
the coefficient of performance as

W = |Qh + Qc|
= ωh

[
1

2
th(β3ωh/2) − 1

2
th(β2ωh/2)

]

+ ωc

[
1

2
th(β1ωc/2) − 1

2
th(β4ωc/2)

]
(15)

and

ε = Qc

W

= ωc

[
1

2
th(β4ωc/2) − 1

2
th(β1ωc/2)

]

×
{
ωh

[
1

2
th(β3ωh/2) − 1

2
th(β2ωh/2)

]

+ ωc

[
1

2
th(β1ωc/2) − 1

2
th(β4ωc/2)

]}−1

= ωc

ωh − ωc

(16)

It is found that the coefficient of performance only depends
on high and low “magnetic fields”. It is well known that the
coefficient of performance of the Carnot refrigeration cycle
is εc = Tc/(Th − Tc). Comparing with these two results, we
can find the analogue of the classical thermodynamic result of
Carnot cycle as long as temperature T replaced by “magnetic
fields” ω.

4. Time evolution of the spin angular momentum and cycle
period

In order to calculate the time of the heat-exchange processes,
one must solve the equation of motion that determines the time
evolution of the spin angular momentum. For a spin system, V̂α

are chosen to be the spin creation and annihilation operators:
Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy , and Ĥ = ωŜz. Substituting
Ŝ+, Ŝ−, Ĥ , and X̂ = Ŝz into Eq. (5), one can prove that [24]

dS

dt
= −2(γ+ + γ−)S − (γ− − γ+) (17)

If ω is constant, γ+ and γ− are also constants, and the solu-
tion of Eq. (17) is given by [7]

S(t) = Seq + [
S(0) − Seq] exp[−Γ t] (18)



J. He et al. / International Journal of Thermal Sciences 45 (2006) 938–944 941
where Seq = −(γ− − γ+)/2(γ− + γ+) is the asymptotic value
of S and Γ = 2(γ− + γ+) is heat conductivity. This asymp-
totic spin angular momentum must correspond to the value at
thermal equilibrium, Seq = − 1

2 th(βω/2). Eq. (18) is a general
expression of time evolution for a spin-1/2 system coupling
with the heat reservoir and the external magnetic field.

In the isomagnetic field process ωh, the “temperature” of
the working substance changes from β2 to β3. Substituting
S(t) = S1 = − 1

2 tanh(β3ωh/2), S(0) = S2 = − 1
2 tanh(β2ωh/2),

and Seq = S
eq
1 = − 1

2 tanh(βhωh/2) into Eq. (18), one can ob-
tain the time of one isomagnetic field, ωh, process as

th = 1

Γh

ln
th(βhωh/2) − th(β2ωh/2)

th(βhωh/2) − th(β3ωh/2)
(19)

where Γh is heat conductivity of hot reservoir. Similarly, substi-
tuting S(t) = S2 = − 1

2 tanh(β1ωc/2), S(0) = S1 =
− 1

2 tanh(β4ωc/2), and Seq = S
eq
2 = − 1

2 tanh(βcωc/2) into
Eq. (18), one can obtain the time of another isomagnetic field,
ωc, process as

tc = 1

Γc

ln
th(βcωc/2) − th(β4ωc/2)

th(βcωc/2) − th(β1ωc/2)
(20)

where Γc is heat conductivity of cold reservoir. In the two adia-
batic processes, since S is a constant of the motion, irrespective
of the time dependence of ω, the times spent along the adia-
batic processes are negligible. Consequently, the cycle period
is given by

t = th + tc (21)

5. Optimization on performance parameters

The coefficient of performance, cooling rate, and power in-
put are three of the important performance parameters, which
are often considered in the optimal design and theoretical analy-
sis of refrigerators. Using Eqs. (12), (15), and (21), one can
find that cooling rate and power input may be, respectively, ex-
pressed as

R = Qc

t
= ωc

[
−1

2
th(β1ωc/2) + 1

2
th(β4ωc/2)

]/
(th + tc)

(22)

and

P = W

t

=
{
ωh

[
1

2
th(β3ωh/2) − 1

2
th(β2ωh/2)

]

+ ωc

[
1

2
th(β1ωc/2) − 1

2
th(β4ωc/2)

]}/
(th + tc) (23)

Using Eqs. (22)–(23), one can optimize these important perfor-
mance parameters of the quantum refrigeration cycle. Accord-
ing to Eqs. (13) and (14), Eq. (21) is rewritten as

R = Γ ωc

2

[
th(yβ2ω2/2) − th(β2ωh/2)

][th + tc]−1 (24)

where
th + tc

= ln
[th(βhωh/2) − th(β2ωh/2)][th(βcωc/2) − th(yβ2ωc/2)]
[th(βhωh/2) − th(yβ2ωc/2)][th(βcωc/2) − th(β2ωh/2)]

Γ = Γh = Γc and

y = β4/β2 is maximum “temperature” ratio of the working sub-
stance in the Brayton cycle. Using Eq. (24) and the extremal
condition ∂R/∂β2 = 0, we can obtain the following equation

(th + tc)(yωc − ωh)

× [sech2(yβ2ωc/2) − sech2(β2ωh/2)]
[th(βhωh/2) − th(βcωc/2)][th(yβ2ωc/2) − th(β2ωh/2)]

− ωh sech2(β2ωh/2)

[th(βhωh/2) − th(β2ωh/2)][th(βcωc/2) − th(β2ωh/2)]
+ ωcy sech2(yβ2ωc/2)

[th(βhωh/2) − th(yβ2ωc/2)][th(βcωc/2) − th(yβ2ωc/2)]
= 0 (25)

It gives an optimal relation between y and β2, but it is too
complicate to yield an analytical solution. Based on numerical
computational method and Eqs. (24)–(25), we can plot the opti-
mal characteristic curves R∗ ∼ y, as shown in Figs. 2–4, where
R∗ = 2R/(Γ ωc) is the dimensionless cooling rate, r = ωh/ωc

is the ratio of high and low “magnetic fields”, τ = βc/βh is the
“temperature” ratio of high and low reservoirs and r > τ . The
region of maximum “temperature” ratio of the working sub-
stance is given

r < y < r2/τ (26)

It is found from these figures that there exist a maximum cool-
ing rate Rmax and the corresponding “temperature” ratio of the
working substance ym for a set of given parameters ωc, βc,
r and τ . For different given parameters, the maximum cool-
ing rate Rmax and the corresponding “temperature” ratio of
the working substance ym are different. At given ωc = 6 J,
βc = 0.5 J−1, r = 5 , the less τ is, the larger the maximum
cooling rate Rmax and the corresponding “temperature” ratio
of the working substance ym are, as shown in Fig. 2. At given

Fig. 2. The dimensional cooling rate R∗ = 2R/(Γ ωc) versus maximum “tem-
perature” ratio of the working substance y for different “temperature” ratio of
high and low reservoirs at given parameters ωc = 6, βc = 0.5 and r = 5.
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ωc = 6 J, βc = 0.5 J−1, τ = 2, the maximum cooling rate Rmax
are almost unvarying and the corresponding “temperature” ra-
tio of the working substance ym increase as r increases, as
shown in Fig. 3. At given βc = 0.5 J−1, r = 5, τ = 2, the
maximum cooling rate Rmax increase, but the corresponding
“temperature” ratio of the working substance ym decrease as
ωc decreases, as shown in Fig. 4. It is found from Figs. 2–4
that among four parameters ωc, βc , r and τ the changes of ωc

or τ will largely influence the maximum cooling rate R. But the
change of r will almost not affect the maximum cooling rate R.
At high temperatures, i.e. βω � 1 , the results obtained above
may be simplified. For example, Eqs. (11)–(16), (19)–(20), and
(24)–(25) may be, respectively, simplified as

Qh = ω2
h(β2 − β3)/4 (27)

Qc = ω2
c (β4 − β1)/4 (28)

β1/β2 = ωh/ωc = r (29)

β4/β3 = ωh/ωc = r (30)

W = [
ω2

h(β3 − β2) + ω2
c (β1 − β4)

]
/4 (31)

Fig. 3. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y for different the ratio of high and low “magnetic
fields” at given parameters ωc = 6, βc = 0.5 and τ = 2.

Fig. 4. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y for different low “magnetic fields” at given parame-
ters βc = 0.5, r = 5 and τ = 2.
ε = β2

β1 − β2
= β3

β4 − β3
= 1

r − 1
(32)

th = 1

Γh

ln
βh − β2

βh − β3
(33)

tc = 1

Γc

ln
βc − β4

βc − β1
(34)

R = Γ ωc

4
(yβ2ωc − β2ωh)

× ln
(βhωh − yβ2ωc)(βcωc − β2ωh)

(βhωh − β2ωh)(βcωc − yβ2ωc)
(35)

and

ωh

(βhωh − β2ωh)(βcωc − β2ωh)

− ωc

(βhωh − yβ2ωc)(βcωc − yβ2ωc)
= 0 (36)

It is found that the coefficient of performance only depends on
r or the temperature ratio of the original and final states in one
adiabatic process. The results obtained here may be compared
to those of macroscopic Brayton refrigeration cycle where the
working substance consists of magnetic salts [30,31]. It is well
known that the coefficient of performance of an ideal gas Bray-
ton refrigeration cycle is 1/(r

1−1/γ

P − 1), where rP = P2/P1
is the pressure ratio and γ is the specific heat ratio [32]. It is
thus clear that the performance of a Brayton refrigeration cy-
cle depends closely on the properties of the working substance,
which is different from that of the Carnot refrigeration cycle.
From Eqs. (35)–(36), we can plot the optimal characteristic
curves R∗ ∼ y, as shown in Figs. 5–7. It is seen from these
figures that the cooling rate monotonically decreases as max-
imum “temperature” ratio of the working substance increases.
At given ωc = 6 J, βc = 0.5 J−1, r = 5, the less τ is, the larger
the maximum cooling rate Rmax is. But the corresponding “tem-
perature” ratio of the working substance ym is unvarying, as
shown in Fig. 5. At given ωc = 6 J, βc = 0.5 J−1, τ = 2, the
maximum cooling rate Rmax increase and the corresponding
“temperature” ratio of the working substance ym increase as
r increases, as shown in Fig. 6. At given βc = 0.5 J−1, r = 5,

Fig. 5. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y at given parameters ωc = 6, βc = 0.5 and r = 5.
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Fig. 6. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y at given parameters ωc = 6, βc = 0.5 and τ = 2.

Fig. 7. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y at given parameters βc = 0.5, r = 5 and τ = 2.

τ = 2, the maximum cooling rate Rmax increase, but the cor-
responding “temperature” ratio of the working substance ym is
unvarying as ωc decreases, as shown in Fig. 7. These results are
different from those in the general case.

6. Discussion and generalizations

(1) If further assumptions are given, i.e.β3 − β2 � βh − β2,
β4 − β1 � β4 − βc, βh � 2β2 − β3, βc � 2β4 − β1, the times
of two isomagnetic field processes may be expressed as

t = th + tc = β3 − β2

Γh(βh − β2)
+ β4 − β1

Γc(β4 − βc)
(37)

The cooling rate R may be simplified as

R = Γ ω2
c

4

[
1/r(βh − β2) + 1/(yβ2 − βc)

]−1 (38)

Using Eq. (38) and the extremal condition ∂R/∂β2 = 0, we can
obtain an optimal relation

β2 =
√

ryβh + βc√
ry + y

(39)
Fig. 8. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y at given parameters ωc = 6, βc = 0.5 and r = 5.

Fig. 9. The dimensionless cooling rate R∗ versus maximum “temperature” ratio
of the working substance y at given parameters ωc = 6, βc = 0.5 and τ = 2.

Substituting Eq. (39) into Eq. (38), we find that the funda-
mental optimal relation between the cooling rate and y is given
by

R = Γ ω2
c r(yβh − βc)

4(
√

y + √
r )2

(40)

Using Eq. (40), we can plot the R∗–y characteristic curves,
as shown in Fig. 8 and 9. It is shown that the cooling rate is
monotonically increasing function of y. Using Eq. (40), we can
obtain

dR

dy
= Γ ω2

c r(
√

rβh + βc/
√

y )

4(
√

r + √
y )3

> 0 (41)

It is also shown that the cooling rate is monotonically increasing
function of y. Substituting ymax = r2βh/βc into Eq. (40), we
can derive the maximum cooling rate,

Rmax = Γ ω2
c (r

2β2
h − β2

c )

4(
√

rβh + √
βc )2

(42)

(2) When the work substance is composed of a spin-J sys-
tem (J = 1/2,1,3/2,2, . . .), the mean value of the spin angular
momentum is given by [24–26]
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S = 〈Ŝz〉 = −JBJ (βωJ ) (43)

where −J � S � J and

BJ (x) =
(

2J + 1

2J

)
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
x

2J

)
is the Brillouin function. At high temperatures, Eq. (43) may be
simplified as

S = −J (J + 1)

3
βω (44)

Compared with Eq. (4), the heat amount of the two isomagnetic
field processes in the cycle may be obtained by multiplying the
factor of 4J (J + 1)/3 in Eqs. (27)–(28). On the other hand,
using the method in Section 4, one may prove that the time
evolution of the spin angular momentum is determined by

dS

dt
= −2a

{
2S + βω

[
J (J + 1) − M

]}
(45)

where M = J (J+1)
3 . From Eqs. (44) and (45), we can find that

the times of the two isomagnetic field processes are the same
as Eqs. (33) and (34). Thus, the coefficient of performance of
the quantum cycle consisting of the spin-J systems is the same
as that of the quantum cycle consisting of the spin-1/2 systems,
while the cooling rate and power input are 4J (J +1)/3 times of
those of the quantum cycle consisting of the spin-1/2 systems,
respectively.

(3) When β3 − β2 	 β1 − β2 , the two adiabatic processes
in the cycle may be replaced by two isothermal processes, the
cycle is close to a quantum Ericsson refrigeration cycle [13]. In
this case, β1 ≈ β2 , and β3 ≈ β4. When β3 − β2 � β1 − β2, the
two isomagnetic field processes in the cycle may be replaced by
two isothermal processes, the cycle is close to a quantum Carnot
refrigeration cycle [13]. In this case, β2 ≈ β3, and β1 ≈ β4.

(4) The above discussion only refers to a single spin-J sys-
tem. For the working substance consisting of many noninteract-
ing spin-J systems, the coefficient of performance is still true,
while the internal energy, work input, power input, and heat
quantity can be obtained as long as the above results are simply
multiplied by the total number of spin systems.
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